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Introduction

The phenomenon of “quantized” oscillation excitation will be
analyzed on the basis of a general model — a pendulum under the action of external
HF periodic force, nonlinear as regards the pendulum coordinates.

The fundamental problem of pendulum investigation, the analytical study of
which goes back to Huygens [1, 2], is isomorphic to a variety of physical phenomena,
particularly such as radio-frequency driven Josephson junction and charge-density
wave transport [3, 4]. This correspondence, recognized over a quarter of a century
ago has led to various studies of phenomena related to the Josephson effect by
means of mechanical analogs. The different types of steady-states, or attractors, of
the driven pendulum and of rf-driven Josephson junction and the ranges of control
parameters for which they occur have been studied extensively in numerical and an-
alog simulations.

The pendulum is a well-known phenomenon intensively studied for over 300
years. At present, the pendulum is quite rightly considered to be one of the most gen-
eral models in nonlinear dynamics [5-8]. Biased, we could say that any phenomenon

' that can be observed in the pendulum is of considerable generality. In systems of the
“pendulum type” phenomena like “resonance”,“frequency pulling, synchronization
and stabilization”, etc. have been discovered. In the early 50-ies N. N. Bogelyubov
and P. L. Kapitza discovered the possibility for stabilization of the upper instable
equilibrium pendulum point using weak high-frequency modulation applied to the
peint of suspension — a phenomenon that is applied for example in heated plasma
stabilization in experiments for termonuclear reaction utilization [5, 9]. It is not a
mere coinsidence that the quantum-mechanic radio-frequency driven Josephson

' An investigation supported by the Bulgarian National Foundation “Scientific Research™ under
Contract No TH-545/95, g
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Junction discovered recently, as well as the charge-density wave transport process are
completely analogous to the pendulum with its strong sinusoidal nonlinearity, The
inexhaustibility of the pendulum as a general model is corroborate once again by the
presented herewith phenomenon of continuous oscillation excitation with an ampli-
tude belonging to a discrete value set of possible stable amplitudes. We believe that
the general problem of excitation of oscillations in different systems under an inho-
mogeneous action of a nonlinear external force (nonlinear with respect to the coor-
dinate of the excited system) should be most beneficially analyzed on the example of
the pendulum. .

Principle is stated for modulation-parametric interactions as reversible process-
es, representing fundamental issue of effective control of electric systems equivalent
impedances [10, 11]. Heuristic viewpoint of the principle understanding and appli-
cation is presented, analysing the effect of unifrequency non-degenerative paramet-
_ tic regeneration [10, 11] and — herewith — the phenomenon of excitation of “quan-
tized” oscillations.

Energy parametric input, transformation and transmission is described as a rule
with reactive parameter variation. Such processes are characterized by generation
and interconversion of combination frequencies. Two opposite in character yet si-
multaneous in manifestation processes take part — this of combination frequency-
generation accompanied by input signal — parametric element interaction and that
of “réverse” combination frequencies conversion with the same parametric element,
Thus is determined system reaction to input signal or signals with other combination
frequencies and system influence as either regenerative or degenerative,

Within this context is formulated the principle of modulation-parametric re-
versible interactions, connected with mutually reversible transformation and mixing
of signals in the presence of parametric elements. Variation of equivalent (effective)
impedance parameters accompanies the process.

Analysing those simultaneous inseparable signal frequency transformation pro-
cesses, analytical differentation into “forward” and “back” sub-processes is made.
First stage of analysis represents equation set, referring to “forward” signal transfor-
mation and combination spectrum generation. Second analysis stage includes equa-
tion solution and gives system reaction in presence of combination components as
result of “back” transformation,

The paper presents a picture of the internal formation of oscillations in the pen-
dulum system and the mechanism of a modulation-parametric energy input channel
for their maintenance,

Analysis of the pendulum oscillations
under inhomogeneous external driving
in the proximity of small amplitudes:
proof for the presence

of a modulation-parametric channel
for input of energy into

the oscillation process

The inhomogeneous driving of an external high-frequency
source of power supply causes a characteristic mixing of its frequency (or its spec-
trum of frequencies) with the frequency of the oscillations of the excited system. The
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characteristic argument of the system is an adaptively adjusted phase that provides a
most favourable, from energetic point of view, interaction between the driven pen-
dulum and the high-frequency source of power supply. In the language of frequen-
¢y, the process of nonlinear interaction of the pendulum with a high-frequency ex-
ternal spurce is expressed by generating an infinite spectrum of combination fre-
quencies. At that, the adaptive automatic adjustment to a most favourable phase is
the necessary condition of such mixing of the two oscillation processes, at which
spectral components with a frequency close to the equivalent resonance frequency
of the pendulum appear. Those spectral components maintain the pendulum oscil-
lations constant and steady and the phase conditions of excitation of one or another
amplitude of oscillation have a discrete nature and differ af the respective initial con-
ditions (initial kinematic parameters of the pendulumj.

The analysis is carried out on the basis of the following equation describing the .
pendulum oscillations under the effect of an external periodic force, nonlinear along
the coordinates: '

(D %+ 2px + o] sinx = e(x)Fsin vz,
where x — angle of deviation of the pendulum from the vertical, o, — frequency of

the small natural oscillations, 2Bx + ®} sinx — function accounting for the friction
and the unharmonicity of the oscillations, F>0 — amplitude of the external force
with high frequency v>>®,, £(x) — function determining the position of the force in
space.

The solution of Eq, (1) is presented in the form

2 = +_Zx,,,

where X , corresponds to the main oscillations of the pendulum, Zx;,, — sum of

combination components generated at the effect of the external force of the pendu-
Ium,

By substituting (2} into {1} and bearing in mind that Z x, issmall as compared
to X, we may write down: J
- Equation about the main oscillations

X +2BX, +olsinX, + [m; cosXUZxa]

Xy
(3
- [s(X )Fsin'vt} + sz Fsinve| ;
Q F ‘ix = ” o
' Xo
— Equation about any I-th combination component out of the possible #-set

X, + 2BX, + {co; cos XOZxM]
4) Sretot

k. [s(X.u)Fsinvt]‘_ + [@Zﬂ'{x,,l’sin vt]!.
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The subscripts “X” and “7” in (3) and (4) mean that only the components with
the frequency of the main oscillations or the corresponding combination frequency
are selected from the respective members of the Equations,

5 ' X, = acos{ot+ ¢, )= acosh,
(6) Zx" = Z”:Aﬂ cos[(v +nm)t+<p"]

where @, ® and ¢, — amplitude, frequency and phase of the main oscillation of the
pendulum; 4, (v+no) and ¢, — amplitude, frequency and phase of the »-th combi-
nation frequency. The frequency o is close to the resonance frequency of the small
oscillations o .

The function &(x) may be analytically represented in a different way, such as

' lat xj<d
e ' ) {0 at ||x|| >d
o i s | .
(7b. ¢ s(x)= e 24 8()6): EI:I i cos[zx}] at |x] <d
' 0 at Ix| >d

where d<<1 and d<<a. At conditions (5} we use the expansion of the functions (7) in
Fourier series:

(8) &(X,)=e(acos8)=q, + ZiaZn cos 2n8,
il ) | dlesus)is 23" b, sin2m.
, e ) =~ et .

The following expressions are obtained for the coefficients in (8) and (9) for the
function of the form of (7a):
28 2 sin Zmﬁa

HETS 3 ~d
(10) a=—2,a =—sin2n b == -, B_ = arccos—,
2 % o 872 re sin@ ? a

0

Substituting {5), (6) and (8), (9) into (3) we obtain the shortened equations of
establishing the amplitude a and phase o, of the pendulum oscillations accounting
for an infinite spectrum of combination frequency:

, G r
an a=—Ba:z+—i-———(aj\,_1 -aNH)oosN(po,
20 2o
& ¢ F
! L 1] 2 N,
(12) % =~ —Le——{a, +a,, )sin No,
where
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+a}jg(—l)k.lm(a){+ P2 A{Z‘;‘S (0, 7 2%0, :ch,,)}

n=+1-2k-N

+ A"{f; (9, F2k0, i(pu)}j‘

=F14+2k-N

_p;b{—zszi{:gl (o, F2me, J_rcp,,)} +F;_2;A"{jo’; (0, F2mo, ;epn)}

2 ZA{E?S (tpoizm@ﬁcp,,)}; S Aﬂ{:i:; (¢0$2n@0$£p")}:‘,

n=t1+2m-2N A=ti—2m-2N

27 {a) : _
J — Bessel function of the first order, c?}; = m; ! __ — change of the resonance fre-

iz

; : "
quency of the synchronous oscillations with the change of their amplitude, N = — —
LcH]

multiplicity of the frequency division in the system, Z iy rnea_ns that any term of

the sum consists of two addends — for the upper and lower siga of n, respectively.
In the regime of stationary oscillations «=0 and ¢,=0. By denoting

®m G G w32
8y =2B—,m, = 2I’T|2= :’gz 28

(1}0 [61] oa moa )
sions for the amplitude and phase of the stationary oscillations of the pendulum:

, from {11) and (12} we obtain expres-

o
: 2 33
5 - - j Fy
(14) a_=F @, ( s i J +[ g ..‘12 J :
By 1 " % Ay gy,

E-n, 4y 4y, ]

1
@, = -—arctg(5

(15) i o =M 4yt gy

A complex spectrum of frequencies is generated in the system, induced by the
strongly inhomogeneous effect of the external force. At that, as a result of the revers-
ibility of the modulation-parametric interactions (see [10-12]) the combination com-
ponents perform input of energy both in the main oscillations of the pendulum and
in the oscillations of any combination components of that spectrum. In this way,
maintaining the stationary oscillations in the system is an integral effect of summing
up the actions produced and mediated by an infinite spectrum of combination com-
ponents, Since the excitation of the components as a result of the action of an exter-
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nal high-frequency source is of synchronous nature, the system under consideration
is marked by strong phase selectivity. Here, similarly to the cyclic accelerators in
wich phase selection and acceleration is only performed on the “equilibrium” parti-
cles, a substantial meaning have those combination componentsx_(see (6) and (12)),
the phase ¢ of which has the most appropriate value from the point of view of the
optimum input of energy in the zone of driving of the external high-frequency source.
This represents the adaptivity of the system and its self-adjustment to a steady-state
stationary regime. In other words, the total action of the combination frequencies
which contribute at the quasi-stationary frequency of oscillation of the pendulum,
performs phase adjustment of those oscillations to the most favourable phase from
energy point of view of the establishment of stationary regim, This transition process
was analyzed by writing down shortened equations similar to those in (11) and (12},
about a certain volum of combination components (4) and their joint solving with
(11) and (12} by numerical methods. Establishing the stationary amplitude g and
phase ¢, of the pendulum oscillations has itself oscillating and rapidly damped na-
ture. Processes of establishing of stationary regimes are observed, at which the am-
plitude and phase continue to “wander” in a certain area around the equilibrium
viues of @ and o,

It is interesting to note that there exist I-th combination frequencies that satisfy
the equation

(16} v+in =t

and fall within the bandwidth of the pendulum as an oscillating link of the system,
They “directly” affect the main pendulum oscillations, without skipping the para-
metric effect due to the reversibility of the modulation-parametric interactions. In-
deed, if only those I-th components satisfying the condition (16), 1. €. /=11 — N, are
taken into account cut of the entire spectrum of combination frequencies, the infi-
nite sums disappear in the expression (13) and it takes on the following form;

an AR LAO AT Pl R
@@ 6o
o) [ rrvn-s.]

e e oo
+A_,_N{ZZ[(N—1)‘P0*@-1~N]}']}‘ ' |

In order to determine the stationary amplitude and phase of the two compo-
nents accounted for: x . =4 cos(mt +@, ) and x_,_, = A—I—N oos(—cot+ (p_,_h,)
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Eq. (41) may be written in complex matrix form (see, for example, [12] for the meth-
od of complex notation):

(18) ‘_ﬂ)g O x::_N + ij 0 | xlc—N
0 -’ |x 0 -jpof x|

-2 ke 7

+1: &)iJo(a) —coﬁjz(a)e " Xin

—(ﬂiJz (a)eﬂw mi‘]o(a) ] _le—N =]

o

Moy =iy SN2} (N +2)e0
rl By (e +e ) [bN_ze Ehe S
Ty J(¥+2}og H¥-2)ag ey L, -Neg X
[bmze +b, e M et N

i LR A =
{fﬂél}" (a)e._J'% +j_§[aN_lej{N—i)W0 " aNHe—j[NH]w ]}

where x; , and x°, , — complex quantities. Substifuting the parameters 4, , and
®,,, obtained from {18} into (17), the possible discrete spectrum of stationary am-
plitudes and phases of pendulum oscillation can be determined from (14) and {15).

Thus, the analysis demonstrates that except the main moduiation channel there
is a parametric channel of input of energy into the system. The quantitative analysis
carried out with numerical methods on the basis of Egs. (74) and (10)-(15) showed
the following. Accounting for the presence of a modulation-parametric channel of
input of energy into the system makes the mechanism of phase selfadjustment, un-
derlying the energy exchange and the maintenance of continuous oscillations in the
system, considerably more flexibie. At that, from the one hand, the discrete series of
possible steady-state amplitudes is substantially specified and, on the other hand, the
oscillations in the system demonsirate greater independence of the random changes
of the external factors, as well as of the quality factor of the oscillating link and the
amplitude of the driving force in 2 wide range.

Conclusion: Final discussion on the problem
under consideration and differences between
two basic cases

In the interaction between the excited system and the power
supply (external HF source) a constrain force is fornted, which is frequency of phase
(in general-argument) modulated force. As it has been shown above, a characteristic
argument of the system can be some adaptively tuning phase, providing the most
advantageous interaction between the excited oscillating system and the bigh-fre-
quency power supply. These facts are caused to call the considered method of oscil-
lation excitation “argument method™.
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From the point of view of the single — frequency problem, the principles of in-
teraction in the superhigh frequency devices with an electronic mechanism of gener-
ation, cyclic accelerators of charged particles, the Fermi’s mechanism of accelera-
tion of cosmic particles, etc. may be considered as partial manifestations of the
found more general “argument mechanism” of excitation of periodic motions in
macroscopic oscillating systems.

The existence of such unusual properties of functioning of the considered class
of oscillating systems with finite degrees of freedom allows us to speak about certain
synergetic principles of grouping into stable formations, which are inherent in the
simplest oscillating systems and processes. In the case considered the system does
not just get energy from the external source in the forced mode, i. e. in the regime
requiring conditions for the functioning of the external action and itself begines tc
act over the source, changing and adapting the appearing force of the action under
the proper regime of functioning, L

It is known that normally the frequency-phase modulation is considered beyond
the relation with its energy interpretation; to obtain it, additional sources of energy
and special modulator devices are always used in the radiophysical systems. In the
case under consideration, the principle of modulation acts as a mechanism provid-
ing the interaction of the excited oscillation system with the external high frequency
source,

If there were not an inverse adaptive action of the system on the exciting source,
then, for example, it would be possible in linear oscillating systems to excite forced
oscillations only with the frequency of the external force, The argument method of
input of energy from a high frequency source allows to excite in linear systems con-
tinuous oscillations with their natural resonance frequency.

The discreteness of the amplitudes of the excited oscillations is also retained in
the cases of a zero or negative coefficient of friction, and in this case the phase adap-
tivity provides nullifying or removing the “excessive energy”,

Returning to the problem of the mechanism of excitation of the pendulum in
the light of the stated above, the following should be additionally noted,

A phenomenon of J. Bethenod is known {13], which is explained by Rocar
through a parametric change of the reactive parameter. We will show that it is possi-
ble in a similar system to excite asynchronous oscillations or rotating motions of the
pendulum by using the hysteresis section of the resonance curve of the “dynamical-
ly” nonlinear electric resonance circuit formed in this way. The useful acceleration
1s created at high resonance amplitudes and the unchanging reaction against pendu-
lum motion (stopping) occurs at low amplitudes as a result of an appropriate jump
in the hysteresis section of the resonance curve.

The resonance circuit (Fig. 1) is power-supplied by a source of AC voltage E
with frequency much higher than and incomparable to the natural frequency of the
pendulum, The latter forms a freel hung ferromagnetic plate acted upon by the mag-
netic field of the solenoid L. At the same time, there is an “inverse” action expressed
by periodic modulation of the equivalent inductance of the solenoid.

Fig. 2 qualitatively shows the dependence of the solenoid inductance on the
angle of deviation y of the pendulum from its equilibrium position y=0. The periodic
change of the solenoid inductance at the pendulum motion leads to the Tescnance
characteristic of the electric resonance circuit becoming substantionally nonlinear.
Fig. 3 qualitatively shows the dependence of the voltage U across the electric reso-
nance circuit on the said angle of deviation y. The pendulum motion results in char-
acteristics with a clearly expressed hysteresis zone that are typical for the nonlinear
resonance (the so-called “beak-like” characteristics) which are symmetrical about
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Fig. 1. Electrical resonance circuit periodically interaction
with an oscillating pendulum

\ +  Fig. 2. Dependence of the solenoid inductance on the
\ positien of the ferromagnetic plate of the pendulum
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the point y=0, Since a variable current leads through the sclencid, a ponderomative
attracting force ¥, which is always directed to the equilibrium position of the pendu-
lum y=0, drives the ferromagnetic plate of the pendulum. A very specific interaction
is obtained as a result.

The solenoid attracts the ferromagnetic plate, which when approaching it
changes its inductance in such a way that the electric resonance circuit “goes” to a
resonance. The voltage across the resonance circuit is increased as a result of this
approach to the resonance, which causes an increase of the current in the solencid
and even stronger attraction of the ferromagnetic plate. When the plate approaches
the resonance position of y=0, the system “skips™ the resonance and, due to the non-
linearity, the amplitude on the resonance circuit is changed with a jump and its value
becomes many times smaller. When the plate leaves the range y=0, the soleroid al-
ready has a stopping action on it, but it is done at much lower amplitudes of voltage
across the resonance circuit. In this way the input of energy is positive per period.
The stated process is also illustrated in Fig. 4. For example, at left - to - right pendu-
Ium motion (Fig. 4a) up to position y=0 the force F will have speeding action, and
later, at y>0 — stopping action. It is seen from Fig. 3 that the pendulum is speeded
up at high voltage amplitudes (up to U__ ) across the solenoid and is stopped at rel-
atively small amplitudes, which do not exceed U,. The correspondence between the
voltage amplitudes U and the driving force ¥ can be established by the comparison
of Fig. 3 and Fig. 4a. At right - to - left pendulum motion (Fig. 45) the process is quite
similar — the acceleration substantially exceeds the stopping action since, due to the
symmetry, on the one hand, and the dynamic duality of values, on the other hand,
the dependence of the force on the coordinate is mirror-reversed. The oscillating
pendulum motion results in useful speeding up once per period. In this way an effec-

8 |
Ullul
14
Fig. 3. Resonance characteristic of an oscilla-
ting circuit at periodic motion of the ferro- ! ; ! L
magnetic plate over a solenoid -, =¥, 0, ¥, ]
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Fig. 4, Dependence of the driving pon-

a FJ deromotive attracting force at left-to-
right (a) and right-to-left () pendulum
motion
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tive input of energy into the pendulum is obtained, which compensates for its natu-
ral losses due to friction. The input energy is proportional to the area of the hestere-
sis section of the resonance curve (the hatched area in Fig, 3). An synchronous exci-
tation of stationary oscillations or rotating pendulum motion is realized.

The analytical study of the represented effect may be performed on the basis of
the following equation describing the mechanical motion in the system;

(19) FH 2y ootsiny = Lale {—_“Ij’ls(yw )+—-""|5"s(y—y )}
. 1] 2 i} il o1

Imet?

where B is a coefficient accounting for the energy losses of the pendulum due to fric-
tion, @, is the natural frequency of small oscillations of the pendulum, mi? is the in-
ertial torque pendulum, / is the pendulum length, m is the ferromagnetic plate mass.
L and y,are explained by Figs. 2, 3 and 4, J, is the averaged effective value of the
electric current, k is a coefficient accounting for the width of the ponderomotive
pulse of the force, 8(yxy,)is Dirac’s delta-function.

As a first approximation, the solution of Eq. (19) may be represented as;

(20} ¥y —=asin®, 8 = e+,

By substituting (19) into (20) and assuming x = awcos 0, % sin@ + cffdicose =0
di d

and a>y, we obtain the following shortened equation related to the phase and ampli-
tude of the pendulum oscillations:

2
ey o pavaB %,
ot a

(22) a3y _op2s
= r.o(a) 2302,
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where w(a) is the frequency of pendulum oscillations, depending on its amplitude,

B= Holy :
2mi’
For the estabilshed oscillations (f =0 and o 0) from (21) the following so-
d a

lutions are gbtained:

2| 2 T
23) af:% 1—1f1-i—2y§ J

24) Pl e
@ =|1s 1-i—2y; .

The steadiness study shows that solution (23) is unsteady and solution (24) is
steady. Therefore, in order to excite continuous stationary oscillations the pendulum
should receive such an initial puls that its amplitude should be greater than a,.

The argument method of input of energy into oscillating processes may find
wide application at solving important problems of creating new methods and systems
of excitation and maintenance of continucus oscillations and transformations of sig-
nals and energy, which may be provisionally grouped in the following way:

1. Transformation of the signals by frequency with high efficiency at a single
division of frequency in szveral ten, hundred and thousand times, which is represent-
ed by various radio-engineering devices with a discrete series of steady-state regimes
of operation, ¢. g. transducers of SHF oscillations to lower frequencies, high-efficien-
cy frequency dividers, oscillators in a wide frequency range, frequency modulators
in the optical range, high-efficiency transformers of energy in the optical and near
infrared range (there are powerful sources producing this energy) into energy of the
submillimeter range (where there are still missing powerful sources of electromag-
netic waves), which is needed to carry out the control processes such as the ones in a
thermonuclear reaction;

2. Transforming the energy from one kind to another, e. g. electric energy to
mechanical, and vise-versa, which is performed by electrical and electromechanical
transformers, electrical signal generators, wave energy transducers, nontraditional
methods of transformation of thermal energy to electrical, etc.

3. Stabilization of various parameters at their change in a wide range (such as
50 to 100 to 200%), including voltage stabilizers for microprocessor systems with a
greal range of permissible load changes, etc.

4. Development of new base components for computing devices, having 2 great
number of discrete steady states.

5. Intensification of varipus processes through special organization of argument
interaction of different oscillating systems or wave processes, e. g. manipulations
such as cavitation destruction, cleaning, emulgating non-mixable liguids and liquid-
phase materials, development of various wave technologies.

6. Modelling of micro and macro processes with the methods of the classic The-
ory of Oscillations, explanation and developing of medels of the processes of inter-
action of electromagnetic waves in the ionosphere and magnetosphere of the Earth,
the phenomena of generating powerful low-frequency waves in the near space in the
presence of cosmic electromagnetic background, interaction of particles with elec-
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tromagnetic waves in plasma medium, radio emission of the magnetospheres of the
outer planets in the Solar System, at the creation of a mega-quantum resonance-
wave model of the Solar System [14], etc.
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Br3byxaaHe Ha ,,KBaHTOBAHH" TPENTEHHNA
Y IPUHIHMI Ha 06PaTHMOCT Ha MOAYJIALHOHHO-
napameTquHHTe BS&HMOﬂCﬁCTBHﬂ

Braoumup Hamzoe

{Perowme)

IIpeacTapeno € aHANHTHYHO H3CAEABAHE HA ABICHAETO Bh3-
Oyxnane Ha ,,KBAHTOBaHA" TPENTEHHA OT IJICAHA TOUKA HA HOPMHEpPAHE HA MOAYA-
IHOHHEC-NAPAMETPHYSH KaHasl 3a e(BeKTHBHO BJIAraHe Ha €HEPIrHA B KoJAeCaTeNHAs
nponec. [log4eprara € mupoxaTa NposBsa Ha IPYELKIIZ HA OGPATHMOCT Ha MOMIY-
NallHOEHO-NIaPAaMETPHYHATE B32 AMOAEHCTBHA, hOpMYJIHPaH A IPEIOKEH OT aBTO-
pa. Ilocnenruar ce dopmupa Ha 0OCHOBaTa Ha ,,IpaBoTe” U ,,06paTHOTC” Npecbpa-
3yBaHE Ha CHEKThP OT M3XOAHH KOMOMHAMOHHH KOMIOHEHTH B IIPACHCTBAETO HA
NapaMEeTpUYeH Hilk HelMHeeH einemeHT, Ha TasH ocHOBa ¢ u3BeAcHE AHHAMHKATA HE
topMHpaHe Ha BRTPEIIHATA CTPYKTYPA HA TPENTECHASTA B CHCTEMA, IPEACTARSHA OT
MAxXai0Q TOA BRHEIIHO HEXOMOTEHHO BBE3AESHCTBHE Ha NEPHOAMYEH RaTOURMK, [Toka-
3aHO e, 4¢ 00pasyBaHuAT MOy IaHHOHHO-IADAMETPHYEH KaHaJ 33 eeKTHBRO BiIa-
TaHe Ha €HEPIrEA IPHAABA CEIUECTBEHA I'bBKABOCT HA CAMOANANTHBEAE MEXaBRIBM
Ha Bb30YXIane ¥ TONABPKAHE HA TPENITEHNA © Bh3MOXKeH AMCKPETEH Pejl YOTOHYH-
BH AMIJIMTYOH. B 3axirounTenHaTa AHCKYCHA aHAJIATHYHO € AEMOHCTPHDAHO, 4e
Np#A B3ANMOAEHCTBHE H3 M2XAJIO C 6/ICKTPHYEH TPENTALL KPBT € BL3MOXKHA IPOARA-
Ta Ha APYT (ACHHXPOHEH) MEXAHH3IbM Ha BHIGYKIAHE H IOANBDXKARE Ha HE3ATHXEE-
LA TPENTEHKSA, HO € AHA ONpenesieHa aMIIHTYAA,
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